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Objective function
Nonnegative Least Squares

argmin
x

F (x) = argmin
x
||Ax− b||22 s.t. x ≥ 0, (1)

Because

||Ax− b||22 = (Ax− b)T (Ax− b)

= xT (ATA)x− bT (Ax)︸ ︷︷ ︸
scalar

− (Ax)T b︸ ︷︷ ︸
scalar

+ bT b︸ ︷︷ ︸
constant

= xT (ATA)x− xT (AT b) − xT (AT b) + bT b

= xT (ATA)x− 2xT (AT b) + bT b

Hence, solving Equation (1) is equivalent to solving

argmin
x

F (x) = argmin
x

1

2
xTQx− xTh s.t. x ≥ 0, (2)

with Q = ATA and h = AT b.
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Multiplicative NNLS Iteration

Theorem (Multiplicative NNLS Iteration)

Nonnegative least squares objective function F (x) in Equation (2) is
monotonically decreasing under the multiplicative update

xk+1
i = xki

[
2(Q−xk)i + h+

i + δ

(|Q|xk)i + h−i + δ

]
, (3)

with δ > 0, Q− = −min(Q, 0), |Q| = abs(Q), h+ = max(h, 0),
h− = −min(h, 0).

Remark: If Q and h have only nonnegative components and δ = 0, above
iteration reduces to

xk+1
i = xki

[
hi

(Qxk)i

]
,

which is called image space reconstruction algorithm (ISRA). Lee ad Seung
generalize the ISRA idea to NMF.
1

M. E. Daube-Witherspoon, G. Muehllehner, in IEEE Trans. on Medical Imaging, 1986.

D. Lee, S. Seung, in Nature, 1999

D. Chen (SWUFE) NNLS November 18, 2013 6 / 23



Multiplicative NNLS Iteration

Theorem (Multiplicative NNLS Iteration)

Nonnegative least squares objective function F (x) in Equation (2) is
monotonically decreasing under the multiplicative update

xk+1
i = xki

[
2(Q−xk)i + h+

i + δ

(|Q|xk)i + h−i + δ

]
, (3)

with δ > 0, Q− = −min(Q, 0), |Q| = abs(Q), h+ = max(h, 0),
h− = −min(h, 0).

Remark: If Q and h have only nonnegative components and δ = 0, above
iteration reduces to

xk+1
i = xki

[
hi

(Qxk)i

]
,

which is called image space reconstruction algorithm (ISRA). Lee ad Seung
generalize the ISRA idea to NMF.
1

M. E. Daube-Witherspoon, G. Muehllehner, in IEEE Trans. on Medical Imaging, 1986.

D. Lee, S. Seung, in Nature, 1999

D. Chen (SWUFE) NNLS November 18, 2013 6 / 23



Gradient Descent Property

The multiplicative update (3) is an element-wise iterative gradient descent
method.

xk+1
i − xki =

[
2(Q−xk)i + h+

i + δ

(|Q|xk)i + h−i + δ

]
xki − xki

=

[
2(Q−xk)i + h+

i − (|Q|xk)i − h−i
(|Q|xk)i + h−i + δ

]
xki

= −
[

(Qxk)i − hi
(|Q|xk)i − h−i + δ

]
xki

= −
[

xki
(|Q|xk)i − h−i + δ

]
((Qxk)i − hi)

= −γk∇(F (xk)),

where the step-size γk =

[
xki

(|Q|xk)i−h
−
i +δ

]
, and ∇(F (x)) = Qxk − h.
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What if δ = 0?

Suppose

Q =

[
1 −1
−1 1

]
, h = 0,

with initial guess,

x0 = (
2

3
,
4

3
),

x1 = (
4

3
,
2

3
),

x2 = (
2

3
,
4

3
), · · ·

However, the optimal solution
is

x∗ = (r, r), r ∈ R.
iterations by (3) with δ = 0

D. Chen (SWUFE) NNLS November 18, 2013 8 / 23
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Positive δ

Suppose

Q =

[
1 −1
−1 1

]
, h = 0,

with initial guess,

x0 = (
2

3
,
4

3
),

...

x∞ = (1, 1),

iterations by (3) with δ = 1
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Convergence Analysis

Definition (Auxiliary Function)

For positive vectors, x, y, an auxiliary function, G(x, y), of F (x), has the
following two properties

• F (x) < G(x, y) if x 6= y;

• F (x) = G(x, x)
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Convergence Analysis contd.

Lemma

Assume G(x, y) is an auxiliary function of F (x), then F (x) is strictly
decreasing under the update

xk+1 = argmin
x

G(x, xk),

if and only if xk+1 6= xk.

Proof:
By the definition of an auxiliary function G(x, y), if xk+1 6= xk, we have

F (xk+1) < G(xk+1, xk) ≤ G(xk, xk) = F (xk).

The equality attains if and only if xk+1 = xk.
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Convergence Analysis contd.

Lemma

For any positive vectors, x, y, define the diagonal matrix, D(y), with
diagonal element

Dii =
(|Q|y)i + h−i + δ

yi
, i = 1, 2, · · · , n

where δ > 0. The function

G(x, y) = F (y) + (x− y)T∇F (y) +
1

2
(x− y)TD(y)(x− y)

is an auxiliary function for

F (x) =
1

2
xTQx− xTh.
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Review

Theorem (Multiplicative NNLS Iteration)

Nonnegative least squares objective function F (x)

argmin
x

F (x) = argmin
x

1

2
xTQx− xTh s.t. x ≥ 0,

is monotonically decreasing under the multiplicative update

xk+1
i = xki

[
2(Q−xk)i + h+

i + δ

(|Q|xk)i + h−i + δ

]
,

with δ > 0, Q− = −min(Q, 0), |Q| = abs(Q), h+ = max(h, 0),
h− = −min(h, 0).
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Review contd.

Suppose

Q =

[
1 −1
−1 1

]
, h = 0,

with initial guess,

x0 = (
2

3
,
4

3
),

...

x∞ = (1, 1),

iterations by (3) with δ = 1
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Sparse Solution?
If a sparse solution is expected, it is recommended to add a regularization
term to the original least squares problem,

argmin
x

F̂ (x) = argmin
x
||Ax− b||22 + λ||x||1, x ≥ 0, λ > 0 (4)

with nonnegative λ as the regularization parameter.

Theorem

The objective function F̂ (x) in (4) is monotonically decreasing under the
multiplicative update

xk+1
i = xki

[
2(Q−xk)i + h+

i

(|Q|xk)i + h−i + λ

]
, (5)

with λ > 0.
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Sparse Solution cont.

Suppose

Q =

[
1 −1
−1 1

]
, h = 0,

with initial guess,

x0 = (
2

3
,
4

3
),

...

x∞ = (0, 0),

iterations by (5) with λ = 2
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Image Labelling2

f(x) :=
K∑
a=1

∑
i

η
2

∑
j∈N (i)

ωij(xia − xja)2 + diaxia


with constraints

∀i,
K∑
a=1

xia = 1, xia ≥ 0,

• xia is the probability of pixel i belongs to labelling set a

• K is the number of labelling sets

• ωij is the weight between adjacent pixel i and j,

ωij :=
ITi Ij
|Ii| · |Ij |

= cos(θ),

where I· is the image value

• N (i) represents the neighbours of pixel i

• η is a parameter controlling the spatial smoothness

• dia is the cost of label a at each pixel

M. Rivera, O. Dalmau, and J. Tago, in ICPR, pp.1-5, 2008.
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Image Labelling: Matrix d3

• Mixture Gaussian

I Assume the data points were drawn from N independent
Gaussian distributions with mean µl and covariance Σl.

I Compute the Mahalanobis distance between each pixel i and
these Gaussian distributions.

dia =
∑
l

(xi − µla)T Σ−1
la (x− µla) + log(Σla)

• Support Vector Machine (SVM)

I Using SVM to find the support vectors for each labelling set.
I Compute the decision function.

dia =
∑
l

αlaK(xi, SVia) + ba,

where K(∗, ∗) is the kernel function in SVM, αla is the
coefficients, and ba is the bias for labelling set a.

C. Chang, C. Lin, LIBSVM, 2001.
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Image Labelling contd.
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Conclusion

Introduced a new algorithm along with its convergence analysis for the NNLS
problem

argmin
x

F (x) = argmin
x
||Ax− b||22 s.t. x ≥ 0,

xk+1
i = xki

[
2(Q−xk)i + h+

i + δ

(|Q|xk)i + h−i + δ

]
,

where Q = ATA and h = AT b.
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Happy Birthday, Bob!
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